(2) Franchini, G. C.; Marchett, A.; Prett, C.; Tassi, L.; Tosi, G. J. Chem. Soc., Faraday Trans. 1 1089, 85, 1697.
(3) Marchetti, A.; Plechioni E.; Tassi, L.; Tosi, G. Anal. Chem. 1989, 61, 1971.
(4) Banerfee, P. C. J. Indian Chem. Soc. 1942, 19, 35.
(5) Maryott, A. A.; Smlth, E. R. Table of Dielectric Constant of Pure Liquids; Natt. Bur. Stand. CIrc. No. 514; U.S. Government Printing Office: Washington, DC, 1951.
(6) Marchett, A.; Prett, C.; Tagliazucchi, M.; Tassi, L.; Tosi, G. J. Chem Eng. Data 1091, 36, 365.
(7) Van Hppel, A. R. Dielectric and Waves, 3rd ed.; Wiley: New York, 1962; Chapter 1.
(8) Marchetti, A.; Preti, C.; Tagllazucchi, M.; Tassi, L.; Tosi, G. J. Chem. Eng. Data 1091, 36, 360.
(9) Fuoss, R. M.; Hsla, K. L. J. Am. Chem. Soc. 1898, 90, 3055.
(10) Roberts, J. H. The Chemistry of Nonaqueous Solvents; Lagowski, J. J., Ed.; Academic Press: Now York, 1976; Vol. IV, Chapter 1.
(11) Tine Serles Processor-TSP-User's Guide; Hall, Bronwyn H., Ed.; TSP International: Stanford, CA, July 1963.
(12) Nakahara, M. J. Phys. Chem. 1084, 88, 2138.
(13) Fuoss, R. M. Proc. Natl. Acad. Scl. U.S.A. 1959, 45, 807.
(14) Stokes, J. M.; Stokes, R. H. J. Phys. Chem. 1958, 62, 497.

Recelved for revlew June 13, 1991. Revised September 27, 1991. Accepted October 8, 1991. We thank the Consiglio Nazionale delle Ricerche (CNR) of Italy for the financial support.

Supplementery Material Avallable: Tables of molar concentrations and molar conductances of picric acid solutions in N, N-dimethylformamide, N, N-dimethylformamide + ethane-1,2-diol, and ethane-1,2-diol (4 pages). Ordering information is given on any current masthead page.

Thermochemistry of Inorganic Solids. 10. Empirical Relations between the Enthalples of Formation of Solld Haildes and the Corresponding Gas-Phase Hallde Anions

Mohamed W. M. Hisham ${ }^{\dagger}$ and Sldney W. Benson*
Loker Hycrocarbon Research Insttute, Department of Chemistry, Universtly of Southern Callfornla, Los Angeles, Callfornia 90089-1661

Abstract

Equation $4, \Delta\left(M_{n}\right)=\Delta\left(M^{\prime} X_{n}\right)+b$, where M and M^{\prime} are two different metals, both with formal valence n, $\Delta\left(\mathrm{MX}_{n}\right)$ ls defined by eq $3, \Delta\left(\mathrm{MX}_{n}\right)=\Delta_{4} \mathcal{H}^{\circ}\left(\mathrm{MX}_{n}, \mathrm{cr}\right)-$ $\Delta_{1} H^{\circ}\left(X^{-}, g\right)$, and for a celected pair of metals, M and M^{\prime}, X can be any of the halogens, has been found to correlate the standard enthalples of formation, $\Delta_{1} H^{\circ}$, at 298 K for any solld halldes whth the corresponding gae-phase hallde ions. White values of b vary over a broad range, values of a are usually close to unlty. The deviations from these relations are always within the clalmed accuracy of the $\Delta_{t} H^{\circ}$ reported. For 40 monovalent halldes, the average deviation te $0.7 \mathrm{kcal} / \mathrm{mol}$ whth a maximum deviation of 2.0 $\mathrm{kcal} / \mathrm{mol}$. For 82 divalent halldes, the average deviation ts $1.2 \mathrm{kcal} / \mathrm{mol}$ with a maximum of $5.0 \mathrm{kcal} / \mathrm{mol}$. For 68 trivalent halldes, the average deviation ts $2 \mathrm{kce} / \mathrm{mol}$ with a maximum of $6.5 \mathrm{kcal} / \mathrm{mol}$. For 16 tetravalent halldes, the average deviation ts $0.8 \mathrm{kca} / \mathrm{mol}$ with a maximum of $1.8 \mathrm{kcal} / \mathrm{mol}$. For alx pentavalent halldes, the average doviation ts $0.9 \mathrm{kcal} / \mathrm{mol}$ with a maximum of $1.5 \mathrm{kcal} / \mathrm{mol}$.

Introduction

In a recent paper (1), we have presented evidence that a quanttative, linear relationship exists among the standard enthalples of formation, $\Delta_{\mathrm{r}} H^{\circ}$, of any three classes of crystalline halides. We have noted that there is no simple relationship between any palr of classes of compounds. However, when the differences in the values of $\Delta_{4} H^{\circ}{ }_{298}$ between two classes of compounds are considered, a two-parameter linear relationship is found.

A typical example is provided by

$$
\begin{align*}
& \Delta_{r} H^{\circ}\left(M X_{n}\right)-\Delta_{r} H^{\circ}\left(M Y_{n}\right)= \\
& a\left[\Delta_{f} H^{0}\left(M Z_{n}\right)-\Delta_{f} H^{\circ}\left(M Y_{n}\right)\right]+b \tag{1}
\end{align*}
$$

where M is any metal of formal valence n in a group of the

[^0]periodic table. Such relations lead to equations of the form $\Delta_{1} H^{0}\left(\mathrm{MX}_{n}\right)=a \Delta_{t} H^{0}\left(M Z_{n}\right)-(a-1) \Delta_{1} H^{\circ}\left(M Y_{n}\right)+b$

When the values of a and b are known for a particular group of metals, then it is possible to estimate $\Delta_{t} H^{\circ}\left(\mathrm{MX}_{n}\right)$ for unknown members of the class. Using oxides and chlorides of metals as prime data, it is now possible to estimate $\Delta_{\mathrm{f}} H^{\circ}$ for almost all crystalline salts (4).
An exammation of the available data on the halldes of various metals wth $\Delta_{4} H^{\circ}{ }_{298}$ of the corresponding gas-phase halide ion reveals another quantitative relation which can also be expressed by a set of two-parameter linear equations. Unless otherwise stated, thermochemical data used here are taken from National Bureau of Standards (NBS) tables (2), and values are glven for $\Delta_{\mathrm{N}} \mathrm{H}^{\circ}{ }_{298}$ per mole of metal atom and at 298 K in kilocalorles.

We define $\Delta\left(M X_{n}\right)$ for a metal M with valence n by following eq 3. $X(F, C l, B r$, or $I)$ is a halide atom, M is a metal atom, and n is its valence state. $\Delta_{1} H^{\circ}\left(\mathrm{MX}_{n}, \mathrm{cr}\right)$ is the enthalpy of formation of solld metal halide $M X_{n}$, and $\Delta_{1} H^{\circ}\left(X^{-}, g\right)$ is the enthalpy of formation of the corresponding gas-phase monovalent halogen anion. The latter are known accurately.

$$
\begin{equation*}
\Delta\left(M X_{n}\right)=\Delta_{\mathrm{t}} H^{\circ}\left(\mathrm{MX}_{n}, \mathrm{cr}\right)-\Delta_{\mathrm{f}} H^{0}\left(\mathrm{X}^{-}, \mathrm{g}\right) \tag{3}
\end{equation*}
$$

The values used for $\Delta\left(M X_{n}\right)$ where the data for at least three halides are available for a metal M with a valence n are listed in Table I. It is interesting to note that, for any given valence state n from 1 to 5 , the values of $\Delta\left(\mathrm{MX}_{n}\right)$ for any two metals within that particular valence group are inearty related, and the relation is given by the following two-parameter, linear equation (eq 4).

$$
\begin{equation*}
\Delta\left(\mathrm{MX}_{n}\right)=a \Delta\left(\mathrm{M}^{\prime} \mathrm{X}_{n}\right)+b \tag{4}
\end{equation*}
$$

For monovalent ($n=1$) halldes, we have chosen to relate all metal halldes to the halides of sodium. The typical plots obtained for some metals to illustrate the relations are shown in Figure 1, and the values for coefficients a and b obtained in eq 4 for the metals examined are summarized in Table II. The comparison between the calculated values using eq 4 and the

Figure 1. Relationship between $\Delta(M X)$ and $\Delta(\mathrm{NaX})$.

Figure 2. Relationship between $\Delta\left(\mathrm{MX}_{2}\right)$ and $\Delta\left(\mathrm{CaX}_{2}\right)$.
corresponding reported values for each metal halide shows remarkable agreement. As shown in Table III, for 11 different monovalent metals the maximum absolute deviation is only 2.0 $\mathrm{kcal} / \mathrm{mol}$ while the average is $0.71 \mathrm{kcal} / \mathrm{mol}$ for the $40 \mathrm{com}-$ pounds examined.

Similar relations described above are also found for di-, tri-, tetra-, and pentavalent halides, and typical plots obtained for these compounds are shown in Figures 2-5, respectively. Divalent halldes are related to the halldes of Ca , trivalent halldes are reiated to the halldes of AI, tetravalent halldes are related to the halldes of U, and pentavaient halides are related to the halldes of Nb . The coefficlents a and b obtained in eq 4 for each set of compounds of one metal are summarized in Table II. The deviations obtained between calculated values using eq 4 and the observed values are listed in Table III. For

Flgure 3. Relationship between $\Delta\left(M X_{3}\right)$ and $\Delta\left(\mathrm{AlX}_{3}\right)$.

Figure 4. Relationship between $\Delta\left(M X_{4}\right)$ and $\Delta\left(U X_{4}\right)$.
divalent compounds (total of 62 compounds with 17 different metals) the maximum deviation is $5.0 \mathrm{kcal} / \mathrm{mol}$ with an average deviation of $1.2 \mathrm{kcal} / \mathrm{mol}$. For trivalent compounds (total of 71 compounds and 21 different metals), the maximum deviation is $6.5 \mathrm{kcal} / \mathrm{mol}$ whth an average deviation of $2.0 \mathrm{kcal} / \mathrm{mol}$. For tetravalent compounds (total of 16 compounds and 5 metals), we obtained the maximum deviation of $1.8 \mathrm{kcal} / \mathrm{mol}$ whth an average devation of $0.9 \mathrm{kcal} / \mathrm{mol}$. For pentavalent compounds (total of six), the maximum deviation is 1.5 wth an average deviation of $0.9 \mathrm{kcal} / \mathrm{mol}$. However, data exist for only two metals in this group.

Discuscton

It is important to note that where in our eariler observations $(1,4)$ the span of $\Delta_{1} H^{\circ}$ values for different metals or anions in a given class usually ranged over $50-100 \mathrm{kcal} / \mathrm{mol}$, in the present finding the range for a given class can span 200 or

Table I. Values Used for $\Delta\left(\mathbf{M X}_{n}\right)^{a}$

M (n)	$-\Delta\left(\mathrm{MX}_{n}\right) /(\mathrm{kcal} / \mathrm{mol})$			
	$\mathrm{X}=\mathrm{F}$	$\mathbf{X}=\mathrm{Cl}$	$\mathrm{X}=\mathrm{Br}$	$\mathrm{X}=\mathrm{I}$
Li (1)	86.3	41.9	31.5	17.5
Na (1)	76.1	42.6	33.9	21.7
K (1)	74.6	48.7	41.7	31.3
Rb (1)	72.3	48.4	41.9	32.7
Cs (1)	71.3	50.2	44.6	35.7
$\mathrm{NH}_{4}(1)$	50.0	19.5	12.3	1.0
Cu (1)		-22.9	-27.4	-30.9
Ag (1)	-12.1	-25.4	-28.4	-32.3
Au (1)		-47.4	-49.1	-47.1
Hg (1)		-29.3	-27.7	-32.6
In (1)		-11.2	-10.5	-19.3
Tl (1)	16.6	-6.9	-11.0	-17.5
Be (2)	184.4	61.5	32.1	-1.1
$\mathbf{M g}$ (2)	207.5	97.6	72.9	39.9
Ca (2)	230.5	134.5	110.6	80.4
Sr (2)	229.7	142.4	119.1	86.3
Ba (2)	227.5	149.5	128.6	96.8
Fe (2)	109.0	26.0	7.3	-20.1
Co (2)	104.4	19.0 (20.4) J	0.4	-25.9
$\mathrm{Ni}(2)$	94.7	17.3	-1.7	-28.4
Zn (2)	121.7	43.5	26.1	2.6
$\mathrm{UO}_{2}(2)$	332.9	214.6	219.5	
Cd (2)	106.4	37.9	23.2	1.5
Hg (2)		-2.1	-11.6	-22.2
Sn (2)		22.0	5.8	-12.8
Pb (2)	97.7	30.2	14.2	-5.2
Ti (2)		67.1	43.6	16.0
V (2)		52.3	34.9	13.0
Cr (2)	124.9	38.8	19.8	-9.6
Pd (2)		-8.2	-27.5	-32.0
Al (3)	298.5	112.6	73.6	27.9
Ga (3)	217.0	69.7	40.0	10.0
In (3)		72.7	50.1	9.8
Sb (3)	157.8	35.6	9.6	-23.1
Au (3)	25.9	-27.6	-39.7	
Sc (3)	328.4	165.3	119.2	
V (3)		83.1	51.2	17.6
Cr (3)	216.0	77.3		1.9
Ru (3)		-6.7	-19.4	-31.4
U (3)	298.0	151.3	114.7	
Fe (3)		39.8	11.7	-33.1
Y (3)	349.8	183.3		100.3
La (3)	345.1	200.8	164.4	112.3
Ce (3)	346.0	197.2		108.3
Pr (3)	342.7	197.4	160.6	109.2
Nd (3)	340.3	193.3	156.3	105.6
Sm (3)	337.9	189.5	152.5	101.1
Eu (3)	314.5	168.1	133.8	
Gd (3)	345.1	185.1	145.7	94.9
Dy (3)	343.4	181.8	146.9	98.0
Ho (3)	344.8	182.1		101.9
Er (3)	343.9	182.0	148.1	99.4
Tm (3)	334.8	181.2		96.7
Ti (4)		140.0	95.0	42.7
Zr (4)	395.8	178.6	129.4	
Pt (4)		-0.3	-15.0	-29.7
Th (4)	438.9	227.9	178.3	111.8
U (4)	396.5	187.9	139.4	75.3
Pa (4)		193.6	144.6	75.9
Nb (5)	372.5	134.9	80.5	17.1
Ta (5)	394.0	149.6	90.6	
U (5)	435.0	197.4	141.4	

${ }^{a}$ Value labeled with J subscript is from the JANAF tables.
even $400 \mathrm{kcal} / \mathrm{mol}$. Desplte this, the average deviations are comparable in the two studies.

Also of interest was our earller observation that different valence groups could all be related if comparisons were made on an equimolar basis. Thus, the differences such as $\Delta H^{\circ}\left(M_{n} X_{p}\right)-\Delta H^{\circ}\left(M_{n} O_{q}\right)$ would be divided by n, the number of moles of metal per formula in making the comparisons.

We have also tried to relate metal hydrides with the halldes. However, no relationship was found among these two groups.

Figure 5. Relationship between $\Delta\left(\mathrm{MX}_{5}\right)$ and $\Delta\left(\mathrm{NbX}_{5}\right)$.

Figure 8. Relatlonship between $\Delta^{\prime}\left(\mathrm{AlX}_{3}\right)$ and $\Delta\left(\mathrm{GaX}_{3}\right)$ for $n_{0}=1-3$.
These are shown in Figures 1 and 2 for $\mathrm{NaH}, \mathrm{CsH}, \mathrm{BeH}_{2}$, and CaH_{2}. Although a quanttative relationship exists among $\Delta_{1} H^{\circ}$ of metal halides and the corresponding gas-phase hallde ions, the reason for such a relationship is difficult to understand theoretically. In practice, we can estimate $\Delta_{1} H^{\circ}$ for any halldes of interest using the above relations.

We also examined relationships among $\Delta^{\prime}\left(M X_{n}\right)$ defined by eq 5 , where n_{0} takes the value $1,2, \ldots, n$, for certain metals with different values of n_{0}. In all cases, the values of $\Delta^{\prime}\left(\mathrm{MX}_{n}\right)$

$$
\begin{equation*}
\Delta^{\prime}\left(\mathrm{MX}_{n}\right)=\Delta_{l} H^{\circ}\left(\mathrm{MX}_{n}, \mathrm{cr}\right)-n_{0} \Delta_{1} H^{\circ}\left(\mathrm{X}^{-}, \mathrm{g}\right) \tag{5}
\end{equation*}
$$

between any two metals with the same valence are linearly related by the following equation:

$$
\begin{equation*}
\Delta^{\prime}\left(\mathrm{MX}_{n}\right)=a^{\prime} \Delta^{\prime}\left(M^{\prime} X_{n}\right)+b^{\prime} \tag{6}
\end{equation*}
$$

It is interesting to note that in most cases lower deviations are used when $n_{0}=1$, atthough no remarkable differences etther in maximum or in average deviations are found for different values of n_{0}. The results are summarized in Table IV, and

Table II. Parameters a and b (Equation 2) Obtained for Different Metal Halides ${ }^{\text {a }}$

$\mathbf{M}(\underline{n})$	$\mathbf{M}^{\prime}(n)$	a	$b /(\mathrm{kcal} / \mathrm{mol})$
$\mathrm{Li}(1)$	Na	1.2744	-11.2
K (1)		0.7964	14.3
Rb (1)		0.7236	17.2
Cs (1)		0.6436	22.2
$\mathrm{NH}_{4}(1)$		0.8991	18.5
Cu (1)		0.3762	-39.7
Ag (1)		0.3817	-41.3
Au (1)		0.0523	-48.8
Hg (1)		0.2640	-38.6
In (1)		0.2800	-21.6
Tl (1)		0.6425	-32.5
Be (2)	Ca	1.2466	-104.1
Mg (2)		1.1077	-49.3
Sr (2)		0.9485	12.7
Ba (2)		0.8654	30.1
Fe (2)		0.8623	-89.3
Co (2)		0.8669	-95.9
$\mathrm{Ni}(2)$		0.8231	-93.8
Zn (2)		0.7900	-61.7
$\mathrm{UO}_{2}(2)$		0.9500	113.5
Cd (2)		0.6923	-54.2
Hg (2)		0.3745	-52.6
Sn (2)		0.6455	-65.1
Pb (2)		0.6900	-62.0
Ti (2)		0.9382	-59.4
V (2)		0.7272	-45.5
Cr (2)		0.8864	-79.5
Pd (2)		0.4091	-67.7
Ga (3)	Al (3)	0.7732	-14.9
In (3)		0.7333	-6.8
Sb (3)		0.6651	-40.2
Au (3)		0.2884	-60.5
Sc (3)		0.9127	56.5
V (3)		0.7875	-6.6
Cr (3)		0.7948	-18.7
Ru (3)		0.2788	-38.7
U (3)		0.8095	58.0
Fe (3)		0.8321	-52.6
Y(3)	Gd (3)	1.0079	-0.7
La (3)		0.9350	25.0
Ce (3)		0.9520	18.5
Pr (3)		0.9388	21.3
Nd (3)		0.9450	17.1
Sm (3)		0.9439	13.2
Eu (3)		0.9045	1.9
Dy (3)		0.9750	4.5
Ho (3)		0.9762	6.8
Er (3)		0.9831	1.8
Tm (3)		0.9402	7.7
Ti (4)	U (4)	0.8570	-22.8
Zr (4)		1.0326	-15.0
Pt (4)		0.2500	-48.3
Th (4)		1.0166	36.2
Pa (4)		1.0500	-2.8
Ta (5)	Nb (5)	1.0331	8.7
U (5)		1.0038	61.2

${ }^{a}$ The a and b parameters are obtained from individual graphs. We have given greater weight to those data which are known most accurately.
some examples are shown in Figures 6 and 7.
Uncertainties as small as $\pm 2 \mathrm{kcal}$ in reference compounds may cause uncertainties as much as $\pm 10 \mathrm{kcal}$ in the estimated values, particularly in the case of fluorides. The reasons for this are easy to understand. For most of the sequences the span of values compared covers $100-400 \mathrm{kcai} / \mathrm{mol}$. Thus, the best lines are most sensitive to the end points. For the halogens these are the lodides and fluorides. If values for these are avallable, then interpolation to the chlorides and bromides is quite rellable. However, if lodide or fluoride values are missing, extrapolations are subject to much greater errors.

For example, we have estimated the values for bromides from corresponding chlorides and lodides by interpolations, and

Table III. Deviations Found for $\Delta_{r} H^{\circ}$ from Linear Relations (Equation 4) Given in Table II

M (n)	dev (obsd - calcd)/(kcal/mol)			
	MF_{n}	MCl_{n}	MBr_{n}	MI_{n}
Li (1)	-0.3	1.2	0.5	-1.0
K (1)	0.3	-0.5	-0.4	0.3
Rb (1)	0	-0.4	-0.2	0.2
Cs (1)	-0.1	0.6	-0.6	0.5
$\mathrm{NH}_{4}(1)$	-0.1	0.3	-0.3	0
$\mathrm{Cu}(1)$		0.8	0.5	-0.6
Ag (1)	-0.2	0.4	0	-0.7
Au (1)		0.8	2.0	-1.7
$\mathrm{Hg}(1)$		1.9	-1.9	-0.3
In (1)		1.5	-1.6	-2.3
Tl (1)	-0.2	1.0	0.3	-1.1
average 0.71				
Be (2)	-1.1	2.1	1.7	-2.8
Mg (2)	-1.5	2.1	0.3	-0.1
$\mathrm{Sr}(2)$	1.6	-2.1	-1.5	2.7
$\mathrm{Ba}(2)$	2.1	-3.0	-2.8	2.8
Fe (2)	0.5	0.7	-1.2	0.1
Co (2)	-0.5	1.7	0.4	-0.3
Ni (2)	1.2	-2.1	2.3	-1.7
Zn (2)	-1.3	1.1	-0.4	-0.8
$\mathrm{UO}_{2}(2)$	0.4	-0.3	-0.9	
Cd (2)	-1.0	1.0	-0.8	0
Hg (2)		-0.1	-0.8	-0.3
Sn (2)		-0.3	0.5	-0.4
Pb (2)	-0.7	0.6	0.1	-1.3
Ti (2)		-0.3	0.8	0
V (2)		0	0	0
$\mathrm{Cr}(2)$	-0.1	0.9	-1.3	1.4
Pd (2)		4.4	5.0	-2.8
average 1.19				
Ga (3)	-1.1	2.5	2.0	-3.3
In (3)		-3.1	-2.9	3.9
Sb (3)	0.7	-0.9	-0.8	1.5
$\mathrm{Au}(3)$	-0.3	-0.4	0.4	
Sc (3)	0.5	-6.0	4.4	
V (3)		-1.0	0.2	2.3
$\mathrm{Cr}(3)$	2.5	-6.5		1.6
Ru (3)		-0.6	1.2	0.5
U (3)	1.6	-2.2	2.9	
$\mathrm{Fe}(3)$		1.3	-3.1	3.7
average 2.10				
Y (3)	-2.7	2.6		-5.4
La (3)	2.6	-2.7	-3.1	1.4
Ce (3)	1.0	-2.5		0.5
$\operatorname{Pr}(3)$	2.6	-2.3	-2.5	1.1
Nd (3)	2.9	-1.3	-1.5	1.2
Sm (3)	1.0	-1.6	-1.8	1.7
$\mathrm{Eu}(3)$	-0.5	1.2	-0.1	
Dy (3)	-2.4	3.2	-0.3	-1.0
Ho (3)	-1.1	5.5		-2.5
Er (3)	-2.8	1.8	-1.9	-4.3
Tm (3)	-2.6	-3.1		0.2
average 2.06				
$\mathrm{Ti}(4)$		-1.8	1.7	-1.0
Zr (4)	-1.4	0.4	-0.5	
Pt (4)		-1.0	1.6	0.2
Th (4)	0.4	-0.7	-0.4	0.8
$\mathrm{Pa}(4)$		0.9	-1.0	0.4
average 0.92				
Ta (5)	-0.5	-1.5	1.3	
U (5)	-0.1	-0.8	0.06	
average 0.90				

the values for iodides from corresponding bromides and chlorddes by extrapolations. The devlations obtained from observed values are compared in Table V, and we find very good agreement for bromides which were determined by interpotation methods. The occassionally high devlations obtained for a few

Table IV. Parameters and Deviations Obtained for Equation 6

$\mathbf{M}\left(\mathrm{M}^{\prime}\right)$	n	n_{0}	a^{\prime}	$b^{\prime} /(\mathrm{kcal} / \mathrm{mol})$	dev(obsd - calcd)/(kcal/mol)					
					$\overline{M F}_{n}$	MCl_{n}	$\mathrm{MB}_{\text {rn }}$	MI_{n}	max	av
$\mathrm{Be}(\mathrm{Ca})$	2	1	1.2466	-104.1	-1.1	2.1	1.7	-2.8	2.8	1.93
	2	2	1.2706	-92.8	-0.8	1.5	1.4	-2.3	2.3	1.50
Ga (Al)	3	1	0.7732	-14.9	-1.1	2.5	2.0	-3.3	3.3	2.22
	3	2	0.7628	-26.4	-1.2	3.0	2.2	-3.9	3.9	2.56
	3	3	0.7516	-39.0	-1.3	3.6	2.4	-4.6	4.6	2.98
Sb (Al)	3	1	0.6651	-40.2	0.5	-0.9	0.8	1.5	1.5	0.93
	3	2	0.6488	-57.1	0.2	-0.1	-0.5	0.6	0.6	0.35
	3	3	0.6312	-75.8	-0.2	0.8	-0.3	-0.3	0.8	0.40
Th (U)	4	1	1.0166	36.2	0.4	-0.7	-0.4	0.8	0.8	0.58
	4	2	1.0172	37.0	0.4	-0.7	-0.4	0.9	0.9	0.60
	4	3	1.0179	37.8	0.3	-0.8	-0.5	0.9	0.9	0.63
	4	4	1.9186	38.8	0.4	-0.8	-0.4	1.0	1.0	0.65
$\mathrm{U}(\mathrm{Nb})$	5	1	1.0038	61.2	0.1	-0.8	0.6		0.8	0.50
	5	2	1.0039	61.4	0.1	-0.8	0.6		0.8	0.50
	5	3	1.0040	61.6	0.1	-0.8	0.6		0.8	0.50
	5	4	1.0041	61.9	0.2	-0.7	0.7		0.7	0.53
	5	5	1.0042	62.1	0.1	-0.8	0.6		0.8	0.50

Table V. Deviations Found (kcal/mol) for Bromides and Iodides

M	n	$\begin{gathered} \Delta \Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{MBr}_{n}\right) \\ \operatorname{dev}(\text { calcd }) \end{gathered}$	$\begin{gathered} {\Delta \Delta_{r} H^{\circ}\left(\mathrm{MI}_{n}\right)}_{\operatorname{dev}(\text { calcd })} \end{gathered}$
Li	1	0	1
K	1	1	1
Rb	1	0	1
Cs	1	1	1
NH_{4}	1	0	1
Cu	1	-1	
Ag	1	0	1
Au	1	2	5
Hg	1	3	8
In	1	4	9
T]	1	0	1
Be	2	2	4
Mg	2	1	2
Sr	2	1	4
Ba	2	3	4
Fe	2	1	4
Co	2	1	3
Ni	2	1	2
Zn	2	1	1
Cd	2	1	3
Hg	2	1	3
Sn	2	1	2
Pb	2	0	1
Ga	3	2	5
In	3	6	14
Sb	3	1	2
V	3	2	1
Ru	3	1	3
Y	3	1	
La	3	2	5
Pr	3	1	6
Nd	3	1	3
Sm	3	2	4
Dy	3	2	4
Er	3	2	5
Th	4	0	1
Pa	4	2	4
Pt	4	2	4
Ti	4	3	7

lodides reflect the corresponding experimental uncertainties involved in the reference compounds, elther bromides or chlorides or both.

Using this method, we are able to estimate values for 28 compounds for which the values are not currently listed. Whenever possible, the estimated values are compared whth their independent mothods which we suggested previously. The results are shown In Table VI. In the case of bromides, we find very good agreement. For lodides, however, the higher deviations obtained in a few cases are probably due to the uncertaintles involved in the observed values of the corre-

Table VI. Some Estimated $\Delta_{f} H^{\circ}$ Values

halide	$-\Delta_{\mathrm{r}} H\left(\mathrm{MX}_{n}\right) /(\mathrm{kcal} / \mathrm{mol})$	
	estimd	reported
CeBr_{3}	210	$211,{ }^{\text {a }} 213^{\text {b }}$
TbBr_{3}	198	199, ${ }^{\text {a }}$ 203 ${ }^{\text {b }}$
HoBr_{3}	201	202, ${ }^{\text {c } 198{ }^{\text {b }} \text { b }}$
TmBr_{3}	197	199, ${ }^{\text {a }} 201^{\text {b }}$
YbBr_{3}	192	$190,{ }^{\text {a }} 191{ }^{\text {b }}$
CrBr_{3}	95	98, ${ }^{\text {a }} 94{ }^{\text {c }}$
HfBr_{4}	182	$185^{\text {a }}$
CuI2	9	$6.0{ }^{\text {a }}$
$\mathrm{UO}_{2} \mathrm{I}_{2}$	237	$252^{\text {d }}$
AuI_{3}	-5	$-15^{\text {a }}$
ScI_{3}	129	$122^{\text {a }}$
TbI_{3}	141	$144,{ }^{\text {a }} 142{ }^{\text {e }}$
YbI_{3}	142	$135,{ }^{\text {a }} 134{ }^{\text {e }}$
TiI_{3}	81	$74^{\text {a }}$
MnI_{2}	62	$60,{ }^{a} 58$
$2 \mathrm{rI}_{4}$	110	
MoI_{2}	23.9	24.8 (JANAF)
MoL_{4}	26	23, 29.4 (JANAF)
TeI_{4}	2	$-1^{\text {a }}$
$\stackrel{\mathrm{PtI}}{\mathrm{PtI}_{2}}$	2	$6^{2^{a}}$
PtI_{3}	10	7^{8}
MoF_{2}		129^{h}
ReI_{3}	7	$6^{\text {a }}$
WI_{5}	24	$14^{\text {a }}$
TaIs	73	$61^{\text {a }}$
HfI_{4}	110	111°
PaI_{5}	126	$114^{\text {a }}$
UI_{5}	125	$112^{\text {a }}$

${ }^{a}$ Using method described in ref $1 .{ }^{b}$ From ref 5. ${ }^{c}$ Using method described in ref 6 . ${ }^{d}$ Using method described in ref 4 . ${ }^{e}$ From ref 7. ${ }^{f}$ Using method described in ref $8 .{ }^{8}$ Using method described in ref 9. ${ }^{h}$ This is obtained by using the NBS values for MoCl_{2} and the JANAF values for MoBr_{2} and MoI_{2}.
sponding reference compounds. It is thus not recommended to use the above relations to try to estimate $\Delta_{l} H^{\circ}$ for lodides for which experimental uncertainties involved in the reference compounds are high ($>2 \mathrm{kcal} / \mathrm{mol}$). However, in these cases our previous methods (4) can be used to estimate $\Delta_{1} H^{\circ}$ for these compounds with reasonable accuracy.

It is of interest to note that, in Table II, the parameters a tend to be near unity. Among the univalent metals this is true for the main-group elements (Na, LI, etc.) while the subgroup elements have much smaller a values. These have all been referenced to Na for the unlvalent metals. We note that Li has the largest a value in this group. If we had referenced all metals to Li , the corresponding a values would all be smaller by the ratio of a_{M} / a_{U} where for metal $M_{,} a_{M}$ is its value against Na and $\boldsymbol{a}_{\mathrm{L}}$ is the corresponding value for Li against Na . For

Flgure 7. Relationship between $\Delta^{\prime}\left(U X_{4}\right)$ and $\Delta^{\prime}\left(T h X_{4}\right)$.
the univalent ions this would have the effect of reducing their a values by a factor of $1.2744 a_{L}$. This is a great help in making extrapolations to fluorides or lodides. A similar result would be obtained for the divalent metals by referencing $\Delta(M)$ values to Be , the element with the largest a value.

Reglstry No. CeBr_{3}, 14457-87-5; TbBr_{3}, 14456-47-4; HoBr_{3}, 13825-76-8; $\mathrm{TmBr}_{3}, 14456-51-0 ; \mathrm{YbBr}_{3}, 13759-89-2 ; \mathrm{CrBr}_{3}, 10031-25-1 ; \mathrm{HFBr}_{4}$, 13777-22-5; $\mathrm{CuI}_{2}, 13767-71-0 ; \mathrm{UO}_{2} \mathrm{I}_{2}, 13520-82-6 ; \mathrm{AuI}_{3}, 13453-24-2 ;$ $\mathrm{ScI}_{3}, 14474-33-0 ; \mathrm{TbI}_{3}, 13813-40-6 ; \mathrm{YbI}_{3}, 13813-44-0 ; \mathrm{TII}_{3}, 13783-08-9$; $\mathrm{MnI}_{2}, 7790-33-2 ; \mathrm{ZrI}_{4}, 13986-26-0 ; \mathrm{MoI}_{2}, 14055-74-4 ; \mathrm{MoI}_{4}, 14055-76-6$; TeI $4,7790-48-9 ;$ PtI, 13779-77-6; $\mathrm{PtI}_{2}, 7790-39-8 ; \mathrm{PI}_{3}, 68220-29-1$; MoF_{2}, 20205-60-1; ReI $_{3}, 15622-42-1 ; \mathrm{WI}_{5}, 13782-91-7$; TaI, $14693-81-3 ; \mathrm{HfI}_{4}$, 13777-23-6; $\mathrm{PaI}_{5}, 17497-66-4 ; \mathrm{UI}_{5}, 13775-20-7$.

Llterature Clted

(1) Hisham, M. W. M.; Benson, S. W. J. Phys. Chem. 1987, 91, 3631.
(2) Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.; Halow, I.; Bailey, S. M.; Churney, K. L.; Nutall, R. L. J. Phys . Ref. Data 1982, i1 (Suppl. No. 2).
(3) Kubaschewski, O.; Alcock, C. B. Metallurgical Thermochemistry, 5th ed.; Pergamon: Óxford, 1979.
(4) The Estimation of the Enthalpy of Formation of Solid Salts. In From Atoms to Polymers ; Llebman, J. F., Greenberg, A., Eds.; VCH: New York, 1989; Chapter 10.
(5) Smith, D. W. J. Chem. Educ. 1986, 64, 228.
(6) Hisham, M. W. M.; Benson, S. W. J. Phys. Chem. Ref. Data 1987, 16, 467.
(7) Standard Potentials in Aqueous Solution; Bard, A. J., Parsons, R., Jordan, J., Eds.; International Union of Pure and Applled Chemistry; M. Dekker: New York, 1985.
(8) Hisham, M. W. M.; Benson, S. W. J. Phys . Chem. 1987, 91, 5998.
(9) Hisham, M. W. M.; Benson, S. W. J. Phys. Chem. 1985, 89, 3417.

Recelved for review July 1, 1991. Revised December 2, 1991. Accepted January 13, 1992. This work has been supported by a grant from the Natonal Science Foundation (CHE-8714647).

Solubility of Four Amino Acids in Water and of Four Pairs of Amino Aclds in Their Water Solutions

Xue Zhi JIn and Kwang-Chu Chao*
School of Chemical Engineering, Purdue University, West Lafayette, Indlana 47907-1283

Solubllity is meacured for l-serine, D-serine, DL-proline, and D-arginine in water at $25-60{ }^{\circ} \mathrm{C}$. The solublity of an amino acid A in a water solution of amino acid B, and the solubility of \mathbf{B} in a solution of \mathbf{A}, has been determined in the same temperature range for four pairs of A and B : L-glutamic acld + glycine, L-glutamic acid + L-aspartic acid, L-glutamic acid + L-serine, and L-asparic acid + t-serine. The eutectic compositions of the water solution of the four pairs of amino acids are reported.

Introduction

Amino acids are valuable chemical substances that are the basic bullding blocks of all forms of life. For use in industrlal processes and scientific laboratories and as food additives, amino acids have to be separated and purified from mixtures that are obtained from protein hydrolysis or an industrial synthetic process. Fractional precipltation and crystallization are sultable for separation of amino acids while other separation methods such as chromatography are also practiced. All separation methods stand to beneflt from understanding of the solution and solublity behavior which is basic to the design of separation and purification processes.

The solubility data of some amino acids in water are tabulated in CRC Handbook of Chemistry and Physics (1) and Fasman's Handbook of Blochemistry and Molecular Blology (2) while the solubillty data of L-threonine, L-cysteine, L-asparagine, L-glutamine, L-lysine, L-arginine, L-histldine, DL-proline, DL-tryp-
tophan, DL-thrionine, DL-cysteine, DL-glutamine, DL-asparagine, DL-lysine, DL-arginine, and DL-histidine in water are still not found. The solubility data of an amino acid in a solution of other amino acids are scarce. Cohn and co-workers (3) reported the solubility of asparagine or cystine in solutions of alanine, glycine, or α-aminobutyric acid. Sexton and Dunn (4) reported that of glutamic acid or norvaline in glycine solution.

In this work, we experimentally determine the solublilty in water for four amino acids and the solubility of each of a pair of amino aclds in their solutions for four pairs. We use the dry weight method for the determination.

Dry Welght Method

By the dry weight method, the solubility of a substance is determined by evaporating to dryness a saturated solution of the substance. The weight of the dissolved solute is obtained from the dried sample. The weight of the saturated solution having been determined prior to evaporation of the solution, the amount of solvent is obtained by difference.
The dry weight method has been used for the determination of the solubility of a single amino acid in water (5, 6). In this work the method is adopted for this purpose and is extended to the determination of the solubillty of an amino acid A in a mixed solution of amino acids A and B . For the latter purpose, a known unsaturated solution of B is brought in contact with solute A. Upon being saturated with A, the concentration of the total dissolved solutes A and B are determined by evaporating a sample of the solution to dryness. The solubillty of A

[^0]: ${ }^{\dagger}$ Present address: Occidental Chemical Corp., 2801 Long Rd, Grand Isiand, NY 14072.

